)N —%FIGBTD
IRIRERK

Il BAX

hilla>YILT4 T BB



nE

1. Non-Latch-Up IGBTHM 5
ST T/\FS-IGBTA
BN RZIGBTOEER
2. n/\y 77 &EField StopEDELY
3. IGBTOI)aV R RICH -
SEDREER

Nakagawa Consulting Office, LLC.



Non-Latch-Up IGBTH5
SET/\FS-IGBTA
BN SRI-IGBTODER

Nakagawa Consulting Office, LLC.



WHABBEENNT—FRF

Nakagawa Consulting Office, LLC.



IGBT D 4FF

1972 Yamagami -- He invented the basic structure of IGBT
(He filed patent only in Japan)

1978 J.D. Plummer discovered “ IGBT mode operation in thyristor”
and was grated a patent.

1980 Hans Becke invented basic idea of IGBT.
He claimed “no thyristor action occurs
under any device operating conditions”

1984 Nakagawa invented the design concept of Non-Latch-Up IGBT.
Saturation current < Latch-up current
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FAM 16.6: A MOS-Controlled Triac Device™

Brad W. Scharf and James 0. Plummer

Stanford University

A MERGED DEYICE based upon double-diffused MOS (DMOS)
technalo sombining the MOS
been de sulting in un alated gate triac structure

able to areas now served by current-controlled PNFN

he deviee — MOS.contralicd Triae (TRIMOS) — may
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switching, output s
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e DIV
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With the cathode grounded and the gate held below the
pozitive DMOS threshold voltage, the PN junction at the
cathode end blocks any s voltage, holding
the = ST up Lo its breakdown volta HI'Y at present.
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of two short channel {
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shows the measured chars
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1. A vertical MOSFET device, comprising:
a semiconductor substrate, including in series, adja-
cent source, body, drain and anode regions of alter-

nate conductivity tyvpe;

the body region being adjacent to a surface of the

substrate;

the source and drain regions being spaced so as to
define a channel portion in the body region at said

surface:

the source, body and drain regions having a first
forward current gain e and the anode, drain and
body regions having a second forward current gain
cez, such that the sum @)+ azis less than unity, and

£ 1|:1£n's.t|:r action accurs under any device operat-

ng conditions.
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Non-Latch-Up IGBT

19844F

IS99 FT7vTIGBTHRYIDER X
IEDM Late News 1984412 H
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First Non-Latch-Up IGBT in 1984.

2010 IEEE William E. Newell Power Electronics Award
For development of non-latch-up IGBTs

Nakagawa Consulting Office, LLC.



Design principle of Non-latch-Up IGBT

Saturation current(@ Vg =20V) < Latch-up current

&
c onds
L up curr&\t level
N

V=20V
Non-Latch-Up IGBT

Current

Voltage

12 Nakagawa Consulting Office, LLC.
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IGBT D 4FF

1978 J.D. Plummer discovered “ IGBT mode operation in thyristor”
and was grated a patent.

GE(/\Y) H)DIGBTIEX S v F7 v 79 BPlummerksEr D §iEE

1980 Hans Becke invented basic idea of IGBT.
He claimed “no thyristor action occurs
under any device operating conditions”
Becke#:iF(Enon-latch-up IGBTsDHIF T
IGBT D E R FeF I F 45!
WEDIGBTIEPlummertFSFIZIEIEAEL AL

1984 Nakagawa invented the design concept of Non-Latch-Up IGBT.
Saturation current < Latch-up current
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Technical trend for 600-1200V IGBT

1st, 2nd, 3rd  Gen.

I

Planar
Fine design

|:> 4th Gen. |:> Sth, 6t Gen.
Trench Gate|| NPT Tech. Thin wafer
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Short Circuit Capability

[1] 0.3 MW/cm2 IEDM, Nakagawa, 1984: World first Short-circuit capability
[2] 0.9 MW/ecm2 PESC, Nakagawa, 1988: IGBT SOA > Bip. Tr. SOA
[3] 2 MW/cm2 ISPSD, Hagino, 1996: Extremely large SOA

_’L—\_ f_;w_l r: = Constant Voltage

50 Source

-

10#—5

Vo Test Circuit o+

Io [530A/Div
T V:200V/Diy
Vp.Ip=0— =T Time:2us/Div

World First Demonstration of Short Circuit Capability in 1984.
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Space charge in N-base

Q =gNpt q(p —n) =gNp + J{y/v, - (1-y)/v }

J J
p = P n= Jn ’Y = —p
Qv qv. J
Define J.=qN/{(1-y)/v.-v/v,} when y< M
V. +V
J <J.: Space charge, Q is positive. ©oh
J=1J.: Space charge, Q 1s zero!
J> J.: Space charge, Q is negative!
J=Jc _ J>Jc Effective junction
Electric
p-base field x /I Eloct
ectric ,»*
.............................. .\ | n-bufter A f.eld\
) R I S
l:l ’ ........ ’0
j o Carrier dénsuty
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1200V IGBT
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Forward voltage can be greatly improved
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by reducing mesa width.

Mesa width

]
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Theoretical limit of IGBT

IGBTs can still be greatly improved in future
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Silicon Limit Analysis based on TCAD for 1200V IGBT

On-state Voltage (V)

Mesa width
800A/cm? -V,

f A A
1200V IGBT = !
1.5 © i

ISaturation= 800A/CTT]2 agn
13 Conditions:

\ Si thickness=100um
1.2 Current density= 150A/cm2
Temp.=150C
1.1 N\ Turn-off loss is fixed at 120uJ/A
1 Large I, case
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Current density (A/cm?)
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It is important to make use of
IGBT chips with large saturation current.
Modules should have short-circuit protection function
so that low on-state voltage chip can be
used for multi-purpose module.
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IGBT Chip footprint as a function of year
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Trends of 600V IGBT

IGBT On-resistance has been steadily improved In the past,
It is predicted that it will approach the IGBT limit in near future.
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ISPSD’ 12
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ISPSD’ 13

Nakagawa Consulting Office, LLC.



47

Scaling Rule for Very Shallow Trench IGBT toward

CMOS Process Compatibility ISPSD’ 12

RV FT—FTHLREF
TR,

CMOS Fab.T IGBT4E
AT RE

Nakagawa Consulting Office, LLC.



48

30cm CMOQOS Fab for Power Devices

contributes to better performance and low cost.
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