# Extraction enhanced lateral IGBT (E<sup>2</sup>LIGBT) : A super high speed LIGBT superior to LDMOS

Youichi Ashida, Shigeki Takahashi, Satoshi Shiraki, Norihito Tokura, and Akio Nakagawa\*

DENSO CORPORATION, Kota-cho, Nukata-gun, Aichi 444-0193, Japan Phone: +81-564-56-7461, Email: YOUICHI\_ASHIDA@denso.co.jp

<sup>\*</sup>Nakagawa Consulting Office, 3-8-74 Hamatake, Chigasaki-shi, Kanagawa 253-0021, Japan

## 1. Introduction

Lateral IGBTs (LIGBT) have been frequently integrated into power ICs such as DCDC converters [1] or micro-inverters [2]. In order to miniaturize the system, high speed and high frequency operation of LIGBT has been strongly demanded. Nakagawa et al. developed SOI-LIGBT with a lightly doped p-layer collector, resulting in fall-time  $t_{\rm F}$ =300ns, on-state voltage V<sub>ON</sub>=3.0V  $(120 \text{A/cm}^2)$ , and breakdown voltage  $\text{BV}_{\text{CES}}=500 \text{V}$  [2, 3]. Kaneko et al. developed junction-isolated hybrid IGBT with employing anode short and electron irradiation, resulting in turn-off time  $t_{OFF}=110$ ns,  $V_{ON}=5.5V$  (68A/cm<sup>2</sup>), and BV<sub>CES</sub>=800V [1]. Sin et al. developed HSINFET, where the anode consists of p<sup>+</sup> emitter and Schottky contact on the n-drift, resulting in t<sub>OFF</sub>=50ns, R<sub>ON</sub>=70hm, and BV<sub>CFS</sub>=130V [4]. However, all the devices, thus far reported, were still slower in switching speed than lateral DMOS (LDMOS), although their on-resistances were lower than that of LDMOS.

We have successfully developed novel <u>Extraction Enhanced</u> LIGBT ( $E^2$ LIGBT) performing a super-high speed ( $t_{OFF}$ =34ns) and a low forward voltage ( $V_{ON}$ =3.7V at 84A/cm<sup>2</sup>) with a high breakdown voltage of 738V. For the first time, both the switching speed and on-resistance of the developed  $E^2$ LIGBTs are simultaneously superior to those of lateral DMOS.

## 2. Device concept

## 2-1. Electron Extraction by Schottky contact on p-layer

We propose a new anode structure, a combination of a narrow p<sup>+</sup>-injector and a wide Schottky contact on lightly doped p-layer with an n-buffer, as shown in Fig. 1. Electrons flow from the channel toward the anode, forward biasing the n-buffer/p<sup>+</sup>-injector junction. Holes are injected from the narrow p<sup>+</sup>-injector (S<sub>1</sub>) toward n<sup>-</sup>-drift under the anode region, resulting in high conductivity modulation. The wide Schottky contact (S<sub>E</sub>) extracts a large portion of electrons flowing along the Schottky contact. As the Schottky area increases, a greater part of the electrons are extracted from the Schottky contact, and only the remaining smaller fraction of electron current flows into the p<sup>+</sup>-injector.

It was found that the conductivity modulation in the anode region can be controlled by the area ratio of the Shottky area over the injector area,  $S_E/S_I$ . This means that both a low  $V_{ON}$  and a short  $t_{OFF}$  will be achieved by designing an adequate ratio,  $S_E/S_I$ . It is also expected that the electrical characteristics are highly independent from temperature because they are determined by the area ratio,  $S_E/S_I$ .

We report, for the first time, that **the Schottky contact on the lightly doped p-layer** is far better than the Schottky contact directly on the n<sup>-</sup>-drift or the n-buffer. The Schottky contact directly on the n<sup>-</sup>drift or the n-buffer too much suppresses the hole injection from the  $p^+$ -injector, and forces a high forward voltage as seen in HSINFET [4]. The conductivity modulation can be precisely tuned by the area ratio only if the Schottky contact is placed on the lightly doped p-layer.

## 2-2. Evaluation of the effect of Schottky contact on p-layer

Device simulation of E<sup>2</sup>LIGBT is carried out in order to evaluate the effect of the Schottky contact on the p-layer. The detailed device parameters of the simulated and fabricated devices are given in **Section 3-1** below. Conventional LIGBT without the Schottky contact is also calculated and compared. Fig. 2 shows the simulated hole density distributions at the anode region for (a) E<sup>2</sup>LIGBT and (b) conv. LIGBT under V<sub>G</sub>=7V and I<sub>C</sub>=200mA (84A/cm<sup>2</sup>). Hole density at point-A in E<sup>2</sup>LIGBT is 7.0×10<sup>16</sup> cm<sup>-3</sup> which is significantly lower than that of conv. LIGBT. Thus, the conductivity modulation at anode region is effectively suppressed by the Schottky contact on the p-layer.

## 3. Results and discussion

## 3-1. Device fabrication

 $E^{2}LIGBT$  was fabricated using SOI wafer of 15µm thick silicon and 5µm Box. An interface n-diffusion-layer with the dose of  $1.5 \times 10^{12}$ /cm<sup>2</sup> was introduced on the Box [5], as shown in Fig. 1, in order to increase the breakdown voltage by 150V. If the interface n-diffusion-layer is not used, a thick Box of 8µm is required to realize the same breakdown voltage. Fig. 3(a) shows the photo of  $E^{2}LIGBT$ . The cell pattern is truck shape and the collector is located at the center. The area ratio,  $S_{E}/S_{I}$ , were chosen to be 33, if not specified. Fig. 3(b) shows the LDMOS consisting of 36 cells. LDMOS has the total device area of 1.9mm<sup>2</sup>, which is 7.9 times larger than that of  $E^{2}LIGBT$ .

## 3-2. DC characteristics

High blocking voltages of 738V for  $E^2LIGBT$  and 731V for LDMOS were achieved as seen in Fig. 4(a). The I-V characteristics are shown in Fig. 4(b). The on-state voltage,  $V_{ON}$ , of  $E^2LIGBT$  is 3.7V for  $V_G$ =7V, I=200mA, whereas  $V_{ON}$  of LDMOS is 6.3V for the same condition. Although the device area of LDMOS is 7.9 times greater than that of  $E^2LIGBT$ , the on-resistance of LDMOS is worse than that of  $E^2LIGBT$ .

## 3-3 Turn-off characteristics

Turn-off time,  $t_{OFF}$ , of the fabricated devices were measured under an inductive load. Fig. 5 shows  $S_E/S_I$  dependence of  $t_{OFF}$ for  $E^2LIGBT$ . The short  $t_{OFF}$  of 34ns is obtained at  $S_E/S_I=33$ . It is clearly verified that  $t_{OFF}$  of  $E^2LIGBT$  is simply determined by  $S_E/S_I$ . Fig. 6 shows measured turn-off waveforms. The measured  $t_{OFF}$  of 34ns of  $E^2LIGBT$  is considerably shorter than 44ns of LDMOS.

Fig. 7 compares temperature dependence of E<sup>2</sup>LIGBT and LDMOS regarding (a) turn-off time, t<sub>OFF</sub>, (b) turn-off energy loss,  $E_{OFF}$ , and (c) on-state voltage,  $V_{ON}$ . The  $t_{OFF}$  of  $E^2LIGBT$  hardly depends on temperature. The switching loss, E<sub>OFF</sub>, of E<sup>2</sup>LIGBT is remarkably smaller than that of LDMOS, as seen in Fig. 7(b). Especially, the temperature dependence of  $V_{ON}$  of E<sup>2</sup>LIGBT is far better than that of LDMOS, as seen in Fig. 7(c).

Fig. 8 compares trade-off relation between current density at 3V of V<sub>ON</sub> and fall time/turn-off time among all the reported high voltage lateral MOS power devices. It is clear that the trade-off of  $E^{2}LIGBT$  is the most excellent compared with those of all the other lateral silicon power devices, so far reported. Especially,  $E^{2}LIGBT$  with  $S_{F}/S_{I}=33$  is better than LDMOS both in on-resistance and switching speed.

## Acknowledgements

The authors would like to thank Koji Senda and Takeshi Sakai for sample preparation, Shogo Ikeura for measurement, Hisato Kato and Shunsuke Harada for TCAD simulation.

#### References

- [1] S. Kaneko et al., Proc. ISPSD07, p.17, 2007.
- [2] A. Nakagawa et al., Proc. ISPSD99, p.321, 1999.
- [3] H. Funaki et al., Proc. ISPSD97, p.33, 1997.
- [4] J. K. O. Sin et al., IEEE Trans. ED, vol.36, no.5, p.993, 1989.
- [5] N. Yasuhara et al., Tech. Dig. IEDM91, p.141, 1991.



Fig. 1 Conceptual device structure with operation principle of SOI E<sup>2</sup>LIGBT.



(a)  $E^2 LIGBT$  (S<sub>E</sub>/S<sub>I</sub>=16)

Fig. 2 Comparison of hole density distribution between E<sup>2</sup> LIGBT and conv. LIGBT. The Schottky contact on p-layer greatly reduces the stored carriers and enhances the switching speed.







40





Measured turn off waveforms under inductive load. Fig. 6



Fig. 7 Measured temperature dependence of t<sub>OFF</sub>, E<sub>OFF</sub>, and V<sub>ON</sub>.  $E^{2}LIGBT$  is always better than LDMOS in (a), (b), and (c).



Fig. 8 Trade-off relation between current density and fall time/turn-off time. E<sup>2</sup>LIGBT is the best among the all the reported devices.